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ABSTRACT

For an m-accretive operator A in a Banach space X, we investigate
. . . d :
the invariance of the solution of ac (u + AAu) + Au > 0 with respect to a

convex cone, under the assumption that the resolvents of A leave invariant
the cone.

If in particular X is a function space and above represents a partial
differential equation, necessary and sufficient conditions are given on the

boundary data to insure the nonnegativity of the solution.
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%7Consider the equation<\§%~(u - 3’a) - Lu - in a cylindrical domain.

Unlike the heat ecjuation, the positi&ity gf the boundary data is not

! sufficient to insure that the solution is nonncgative. It is desirable to

identify those boundary data for which the above property is true. One
reason is that, since the above cquation is a model for heat conduction and
for fluid flow in fractured porous media, it is of interest to locate those
boundary data that make the correspondent vphysical process meaningful.

In this paper several boundary value problems associated with the above

equation are studied and necessary and sufficient conditions on the data are

given to insure the nonnegativity of the solution.
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ON THE MAXIMUM PRINCIPLE FOR
PSEUDOPARABOLIC EQUATIONS

Emmanuele Di Benedetto and Michel Pierre

INTRODUCTION

Let A be an m-accretive operator in a Banach space X; it is well~
known that if its resolvents JA satisfy:
(1) ¥A >0 JAC cC ,

for a given closed convex set C of X, then the solution of:

du _
(P) 3t +Au2 0 , u(0) = uy -
satisfies:
(2) uy € C = vt u(t) € C

Here, we study the same problem for the associated pseudoparabolic equations:

d —_
(PP) at (u+ XAau) +aus 0 , u(0) = vy (A > 0)

or, more generally, if A(t) is a family of m-accretive operators satisfying (1):

(ep), dit (0% AA(BW +A(BU> 0 , ul0) = u

In order to exhibit a concrete situation, we remark that equation (PP)t
contains as a particular case, the following problem:

% (u-2u) - Au=0 in 2 x [0,T[

(E)
u(t) = g(t) , ulo) = Uy e
N

where ( 1is a bounded open set in R". This equation can be assumed as a model

for diffusion of fluids in fractured porous media (see [2]), or as a model for heat-
conduction involving a thermodynamic temperature & = u -~ AAu and a conductive
temperature u (see [11], [23]). Moreover, when X is small, it is an approxima-

tion of the classical heat equation (i.e. (E) when X = 0) (see (191, [22]).

Sponsored by the United States Army under Contract Nos. DAAG29~75-C-0024 and
DAAG29-80-C~0041. This material is based upon work suuported by the National
Science Foundation under Grant No. MCS78-09525 AOl.




It is well-known that in the latter case () = 0):

(3) w, >0 , ¥t g(t) > 0) = (vt u(t) >0)

which is the property (2) when C is the cone of nonnegative functions in some
LP("). But is (3) true for the equation (E) when i > C?

In (23], Ting proved that, if g{t) : 0, the solution u of (E) satisfies:

(4) 0~ u, =¥t 0 < uft) .

In fact this result is a particular case of a more general situation. Namely if

Alt) - A is a linear and time-independent m-accretive operator satisfying (1),

the solution of (PP) satisfies (2) (cf. proposition 1.2).

But when A 1is nonlinear or depends on time, this result is no longer true.

For instance Rundell and Stecher noticed in [20) that the mere nonnegativity of

uy and g is not sufficient to insure a nonnegative solution for (E). This shows

that extra assumptions on A(t) are needed to obtain the invariance property (2)

for (PP)t or even (PP). The purpose of this paper is to give some results in this B

direction together with related questions.
Our study is divided in three parts. ’
The first section contains abstract results. For example, using the fact that,

if A satisfies (1), its Yosida-approximations also do, we easily show the linear

result indicated above and the following general property: if u is the solution

of (PP)t where A(t) verify (1)

Uy + A(O)uo . C=vt uf{t) + A(t)ult) ¢ C ,

and then u(t) - C vt.

In the second paragraph, we study problems of type (E), We show that the
nonnegativity of the data is preserved in (E) if g does not decay too rapidly.
More precisely, the solution u of (E) satisfies:

(5) uy 2 0 = vt ulft) >0 ,
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if and only if:

t/

vt g&) > e ¥ 50

The case of Neumann boundary data is also considered.
The third paragraph studies the equation (PP) for "classical" nonlinear

operators A in tP (1) and the results are quite surprising. Assuming that

uo >0 ,

A
u0 >0=¥%¥) >0 JA
the fact that the associated equation (PP) satisfies the maximum principle (5)
depends on the nature of the nonlinearity of A. Let us summarize some results.

Let & denote a maximal monotone graph in R xR with 0 . 50 and let us consider

the following (formal) equations:

(£)) % (u - A\Bu) - APu 0 , (.”.u)(t)“)‘ =0 , ul® =u, -

q
(E2) S (u - AAu) ~ Au=0 , - %E-» f{u) on 3! , u(n) = u0 .
(E3) 3% (u+ A(-Au + Pu))-Au + % - 0 , u . =0 , ul(o) = uy -

(El) satisfies (5) for any £.

0 -
o3
satisfies (5) if and only if by 10,=[n D(R) - L~££l-5 is nondecreasing.
AY
.

0
satisfies (5) if D() ' [0,»0 or . r  10,=fn p(g) » £y g IX
N B
is nondecreasing and the latter condition is necessary if B is regular.

-~




1. ABSTRACT RESULTS

In this section we denote by X a Banach space with the norm '« and T a
positive number. As usual Ll(O,T;x) (resp. C([0,T];X)) is the space of
integrable {(resp. continuous) functions from [0,T] into X and

wlo,1:%) = fu e Lteo, %) ; g—z e trio, T}

(see (7] appendix for more details about this space).
For any t < [0,T], we will denote by A({t) a (possibly multi-valued)
. . - X - X - :
operator in X, i.e. an application from X into 2 with domain

D(A(t)) = {x € X ; A(t)x # §} and range R(A(t)) = U A(t)x (we identify A(t)
xeX

with its graph in X x X). We will study the associated pseudoparabolic equation

d . =
(PP)t ac (u{t) + Aa(t)ult)) + A(t)ult) » £(t) , u(0) = Uy

where uo e X, £« Ll(O,T;X) and A > O.
First we make precise the meaning of solution of (PP)t and the assumptions on

A(t) that insure its existence.

A) Existence results

As it is the case for the associated parabolic equation:

(P)t é% uft) + A(t)u(t) > £(t) , u(0) = Uy v

and as it has already been remarked and used in [19], [18], [22), it is natural to
assume that the operators A(t) are m-accretive (we refer e.g. to (12], ({15] or
[3) for more details about this notion--let us just recall that an operator A on
X 1is said m-accretive if, for any A > 0, I + A\A is onto and JX = (I + \A)—l
is a nonexpansive mapping from X into itself--).

In fact, under this assumption, (PP)t is far easier to solve than (P)t and
even has "strong" solutions which generally is not the case for (P)t' However a

difficulty arises for the uniqueness when the operators are multivalued. If one

interprets the equation (PP)t as: "there exist w(t), w(t) ¢ A{t)u(t) such that




N NN s e N T e

d .
a{'(“*’)“")*w=f ' u(0)=u0" '

then the function u need not be uniquely determined even if A(t) - A is
accretive, as shown by the simple example below. So we will require the selections
w and W to be the same. Moreover it appears that the natural initial data is
not ug < D(A(0)), but an element [uo,wol € A(0). In particular, even if one
imposes w =w, for u fixed the solution generally varies with Woe

0

Example: let X =R, D(A) = [0,»(, AO = ]-=»,1], ¥x > 0, Ax = 1. Then, the problem:
Fwlt) , W) € Ault) with w(0) = w(0) =0 ,

d N
3{‘“"’”)*“:2 , w() =0 |,

admits the following two solutions:

0 in [0,1n2]
uy (t) =
t - 1In2 in ([1n2,=)

for the selections
t

21 -e ) on [0,ln2]

w,(t) = W (t) =
1 1 1 on [1n2,x) ,

and:

2
0 on [0,31

u,(t) =
2 2 2
t - 3 on [3,»)
for the selections
2t - 2¢2 on [0,2—] 2t on [0,2—]
4 3 - 2 3
W, (t) = , W (t) =
2 2 2
1 on [F,W) 1 on [3,‘”)
Moreover, the problem
d
w(t) € Au(t) ; == W+ w) + w=2 , u(0)=0 ,

admits the solution uy

at

-5~
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These remarks suggest the following definition of solution which is justified
by the proposition 1.1 below.

DEFINITION. Given [uo,wOI - A(0) and f Ll(O,T;X) we call solution of

(PP)t (u + AA(t)u) + A(tdu > £ , u(0) =u , A(O)u(0) > w '

4
dt 0 o

a function u of C([0,T);X) such that:

[ 3w < C([0,T];:;X) with u + 2w € wl'l(O,T;X) and
(pp), < w(©) =W , ¥t <[0T , w(t) €A(t)ulr)
i
\uw)=u0, a.e. t € (0,T) , %-wu)+AMM)+wu)=fm)
We denote by Jx(t) = (I + )\11\(1:))-l the resolvent of A(t) and state the

following proposition.

PROPOSITION 1.1. Suppose A(t) is m-accretive for any t ¢ [0,T] and satisfies:

¥x ¢ X , [t » Jx(t)xl is continuous on (0,7T]

1 : : .
Then, for any (uo,wol € A{0) and f € L7(0,T;X), there exists a unique solution

of:

A(0)u(0) > w_ .

%—m+kA&N)+A&N3 £, uW)=u0, o

Moreover the solution w satisfying (pp)t is unique.

Remark 1.1. when the applications ([t » Jx(t)x] are only integrable (and a.e.
defined), we can obtain a "solution” u ¢ Ll(o,T;X), but the meaning of the initial

conditions u(0) = L A(0)u(n) = w. must then be understood in a weak sense to be

0

precised.

Remark 1.2. 1In the case when A(t) : A, f z 0, the proposition above associates

with any [uo,wol A and t ¢ [0, a unique ([u(t),w(t)] ¢ A. Hence the mapping
(uo,wo) - Sx(t)(uo.wo) = (u(t),wit))

defines a semigroup of operators from A (identified with its graph) into itself,

-6~




that is:

So=1, [t~ S\(t)(uo,wo)] is continuous
¥s,t >0 , S)\(t+s)=5k(t)s)‘(s) .

In fact, one can easily show that S\(t) can be extended in a group on R.

Considering the distance defined on A by

d((u,w),@,w) = lu-G4+xw-wl ,

since A 1is accretive, S\(t) is a nonexpansive mapping on A for this metric.

Remark 1.3. If A 1is singlevalued, by setting ul(t) = Sp(t)uo’ we also define a
continuous semigroup of operators from D(A) into itself which converges to the
semigroup generated by A (e.g. in the sense of [12)) when )\ goes to 0 (see
prop. 1.4). 1In gencral S)(t) is not a contraction (see remark 1.5) and even
cannot bhe continuously extended to D) (see corollary 3.1).

If A is linear, we can show that S}(t) is a semigroup of contractions
from DI{(A) into it-elf. This is a consequence of the following linear properties:

d - adu = =
3 (Au)—A(dt) B JAA AJA A)‘

(we recall that if A 1is an accretive operator, its Yosida approximation is

1
A)— ) (1 J))).
For linear operators A we have:
PROPOSITION 1.2. Let A be a closed linear accretive operator in X, uo « D(a),

f e LI(O,T;X) with £(t) D(JX) a.e.t; then the following statements are

equivalent:

1,1

(1) u . c(lO,TI;X) , u+ MAu ¢ W (0, T; X)

d
ac (u+ Mu) +Aau=f , u(0) = uy -

1'

(11) u, B« W0, 1), u' () ¢ D(A) a.e.t.

u' + MAu' + Au=f£f , ul(0) = U

e aia e




(iii) w - wl'l(O,T;X)

u'+Au=JXf , uf(0) =u

A 0

Moreover, if u and U are solutions of the above equations with data (u.. £)
J

and (ﬁo,f) respectively, then
- t -
ve < (0,71, Jutt) - ue)| < fug - dgl + [ [£) - £(2) a5
0

Remark 1.4. The property (iii) is of a particular interest. Together with lemma
1.1 below, it shows that, when £ = 0, u and u + »Au are both solutions of the
equation:

u'+A)‘u=0

The last inequality (which is a direct consequence of (iii) and the accretivity
of AA) gives a way to define a notion of solution for the eguation (i) when
Uy € D{a).

The proof of the proposition 1.1 rests upon the following lemma:
lemma 1.1. Under the assumptions of the proposition 1.1, u is a solution of
d
(PP)t T {fu + AA(t)u) + A(t)u > £ , u(0) = v, A(O)u(0) = Wy s

if and only if wu(t) = J)‘(t)v(t) where v 1is solution of

ol , = dv -
(PA) VeW 0, T;X) , Vo T Uyt AWy at t A)‘(t)v(t) = f(t)

Proof of lemma 1.1.

If u is a solution of (PP)t, setting vi{t) = u(t) + dw(t) (w{t) 1is the

corresponding selection out of A(t)u(t)), we have u(t) = J.\(t)v(t) and

vi{t) - u(t)
A

Now let v be a solution of (P)‘) and uft) = Jx(t)v(t); then u ¢ C([0,T];:X)

wit) = = A)\(t)v(t); hence v satisfies (PA)'

by the assumptions on J)\(t) and the inequality:

-8~




ws,t = [0,T] , lutt) - u(s)] < 1T (Elv(e) - I (shvit) o+ vit) - v (s)

As vI(t) ¢ u(t) + M(t)u(t), there exists w - C([0,T]1;X) with wi(t) al)gin)
and v = u + )lw. Moreover

vit) - uft)

3 = w{t) for any t . [2,T]

A)‘(t)v(t) =
So u is a solution of (PP)t.

Proof of Proposition 1.1.

By lemma 1.1, it is sufficient to prove existence and uniqueness of the
solution of (P\). Since Ax(t) are Lipschitz-continuous on X and
t > Ak(t)x - f(t) integrable for any x ¢ X, the proposition follows from known

results (see for example (7], example 1.3.2).

Proof of Proposition 1.2.

Suppose u satisfies (i); then, as v = u + \Au - wl'l(o,T;x) and since J

Wl,l

A

. is linear and continuous on the closed set D(Jx). u=Jv

\ (0,T;X) and

u' (t) = JAV'(t) a.e.t. By difference, Au ¢ wl'l(O,T;X) and since A 1is linear
and closed é%-(Au) = Au'. This proves (ii).
Clearly (ii) implies (i).

Now, if u satisfies (ii), by applying Jy we obtain:
u' (t) + JAAu(t) = fo(t)

From the linearity of A, JxAx = AJAx for all x ¢ D(A). Hence (ii) = (iii).

Finally suppose u satisfies (iii); then:

a,e.t. u(t) + iu' (t) - JAu(t) = JAf(t) , ul0) = uo

This proves that (u + Ju')(t) € D(A) and, by inteqration, that u(t) and
u' (t) € D(A). Therefore, by applying I + AA we obtain (ii).

The last inequality follows from (iii) by using the fact that A\ is accretive.

P X gy g




B) Continuity results

The following results are a direct consequence of general facts about m-accretive
operators and will be emploved in section 3.
PROPOSITION 1.3. Let (An) be a sequence of m-accretive operators converging to
the m-accretive operator A, i.e.

n
. A A
¥, ~0 , ®¥x - X , lim Ju x=Jx .

n ~xo s

Suppose [ug,wg] € An converges to [UO'WC] « A and fn converges to f in

Ll(O,T;X). Then, the solution W oof

d n n n nn n n n nn n
It (u + XAuw) +Au - f , u (0) = vy A'u {0) > Wy
converges in C({0,T);X) to u solution of
3 (U + M\Au) + Au > £ (0) = Au(0) » w
3t oo E o, uli =, e A o '

and the corresponding sections W also converge in C([0,T];X) to w.

PROPOSITION 1.4. Let A be an m-accretive operator in X, [ug,wg ca, £ <t .

Suppose fn converge to f in Ll(O,T;X) and there exists xn converging to O
such that ug + Anwg converges to u0 « D(A). Then when n goes to «, the
solution of

@" + AnAun) + Aad" £ , un(o) = ug , Au" (0) w; R

4
dat
converges in C({0,T);X) to the integral solution (in the sense of [4]) of

du
(P} a€-+ Au - f , u(0) = uy -

Remark 1.5. From the proposition 1.3, we can deduce that the pseudoparabolic
semigroups associated with a singlevalued m-accretive operator (cf. remark 3) are
not semigroups of contractions. To see this, let us consider AE the Yosidz-

approximations of a m-accretive operator A. Let (ugewy] and [GO,&O] € A

=10~




with W # Qq and let u , u_ be the solutions of

= [

d
TS (u + Aiu) + Aiu =0 ,

with u (0) = g, + W u (0) = uy + EQO respectively. Since A  converges to A

and A.(u0 + rwo) = Wy 0

A (u0 + EQO) = w_, by the proposition 1.3, u and u
converge to the solutions of:

d
T (u + Au) + Au =0 , u(mM) = u0 ,

with Au(0) w, and Au(0) - QO respectively. Now u and u are in general

different as shown by the previous example. Hence one cannot have:

¥yt -0 , ¥ ~0 , [u:(t) -u () o {(uo +oewp) = (a4 r&o)f = dw, - w b

Proof of Proposition 1.3.

By a known result (see Benilan (4]}, the solutions ' of

n
dv n, n_ n n _.n n
g ) =1, vi(0) = ug * AW,

converge in C([0,T];X) to the solution of

av
T AV = £, v(0) = u, + g
n n
A A :
By lemma 1.1, = Jx v" and u-= Jxv. Since v([0,T]) is compact and J? ’ J?
An A
are contractions, JA v converges to JAV in C([0,T);X). Moreover we have:

n
B o R O R L O R S I AR (S I A (ST I
n n n_ n
Hence u converges to u in C([0,T];X) and w = ¥ Y converges also in
C([0,T);X) to w= < : 2,
Proof of Proposition 1.4.
let v be the solution of
av” n n n n n
75?-+ Axnv > £ r v (0) = u0 + xnwo .
-11-
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By the quoted result (see [4], [3]), " converges in C([0,T];X) ¢to the integral
solution (in the sense of [4]) of

d
d—‘:+Au:f , u(0) =u

Moreover:

[ ) - utt)] = ba, vie) - ute)] 2 v ey - ue)] o+ IJ) ult) - u)!
n n

and J, U - u converges to 0 in C({[0,T);X).
n

Remark. Continuity results similar to this proposition can be found in [22].

C) Invariance properties for (PP)t

we denote by C a closed convex set in X.

PROPOSITION 1.5. Assume the hypothesis of proposition 1.1 and suppose that:
(i) a.e.t. J}‘(t)c + M(t) cC

(ii) uy + Awo e C

Then, u(t) + dw{t) ¢ ¢ for all t ¢ [O,T]. If, moreover Jx(t)c c C, then
u(t) ¢ ¢ for all t ¢ [0,T].

PROPOSITION 1.6. Let A be a linear m-accretive operator in X and u the
solution of

d
E(u+AAu)+Au=f,u(O)=u '

with uo ¢ D(A) and f ¢ Ll(o,'r;x). Suppcse:
a.e.t € JO,T[ , JA(C + Af(t)) ¢ C
Then:

(uo € C) = (vt ¢ [0,T] , ult) € Q)

Remark 1.6. To see the interest of the first proposition, let us suppose that

x = IP(2) for some p ¢ [1,»] and some open set { in R and let

wl]l2-




C = {u - Lp(”); u > 0}. Suppose that A(t) is a family of m-accretive ogerators
in LP(J) satisfying the following maximum principle:

fu>0)=(¥y >0 , J)&hxio)

Then, as an application of the proposition 1.5 we obtain that if u is the solution
of

d -
EE-(u + AM(t)u) + A(t)u - £ , u(0) =u '

then:

(u0+AA(0)uon , £

v

0) = (¥t , ult)+21a(t)u(t) > 0)

and, therefore wu(t) >0 for all t ¢ (0,T).

ﬁ In the particular case when A(t) are the operators associated with the

equation (E) in the introduction, this result says that the thermodynamic temperature
remains nonnegative for all t > 0 if it is so for t = 0. This was remarked in

{23] for (E) when g = 0. Above shows that this property is quite general.

Remark 1.7. A more interesting result is the following. Given a family of operators
aA(t) satisfying:

b > 0) = (Jx(t)u >0y ,

what can be said about the positivity of the solutions of the associated pseudo-

parabolic equation assuming that u_ >0 and f > 0?

0

The proposition 1.6 gives a first result; it tells that if A(t) is linear,

independent of time and satisfies the above maximum principle, then uf(t) > 0 as

soon as u, > 0 and £ > 0.
But this is not necessarily true if A(t) depends on time or if A(t) = A
is not linear. The purpose of the next sections is precisely to study in particular

cases what extra assumptions on A(t) imply the nonnegativity of the solutionms. !

The main idea in the proof of both the propositions is the following (see [10]).

If a closed convex set C is "invariant” by A, it is also invariant by A\,

-]l3-




that is:
-1 -1
A >0 , (I + M) CcC) = ®u>0 , (I+ qu) C c ()

Moreover also the semigroup generated by Ax leaves C invariant. More precisely,

we use the next lemma proved in [7) - Corollary l.1l.

Lemma 1.2. Let C be a closed convex set in X and, for any t ¢ [0,T), let

J(t) : C -+ C be a contraction such that x * J(t)x is integrable for any x ¢ C.
Then, for any vy € C there exists a unique Vv ¢ wl'l(o,r;x) with vi(t) < C for

p

all t satisfying:

dv vie) - JitIvie) |

v({0) = v - 3 o]

o]

Proof of Propositions 1.5 and 1.6.

To prove 1.5 use lemma 1.1, and apply lemma 1.2 with J(t) defined by

MHx=J“Hx+AﬂH.

To prove 1.6 use the proposition 1.2, and apply lemma 1.2 to vy = Uy and '
J(t) defined by J(t)x = Jx(t)(x + Af(t)).
'
!
'
i
-14~
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2.  MAXIMrY PRINCIPLE FOR EQUATIONS OF TypE (%)

In this section we describe some invariance properties of the solution of
(PP)t with respect to convex cones, for some onerators which are, roughly speaking
"linear in the interior." The results of the next part A, will be applied to

boundary value problems connceted with cquation (), in part B.

A. Somc general remarks

Iet A be lincar and m-accretive in ¥ and let G C([n,T]:X) bhe given,

f ror t - [0,T] define
DIA ()] u X Pu - a(t) D)
. 1.
Aft) = Alu - G(E)) - = G(e) .

t Note that A{t) 1is also m-accretive in X for all t {0, T}, hence by
proposition 1.1, for any u DIAMY) and f LI(O,T;X), there exists a unigue
solution of
(E) 3w amw +amu £ u() = u

dt ! 0

5
% We will dcenote with u)(-,u”,f) such a solution. Our next task is to derive a
g representation of u)(-,uo,f) in terms of the operator A, which will be
% extensively used throughout this section, With J\ = (1 + FA)—I, Y > 0, we denote
é the resolvents of A. A, is the Yoshida approximation of A and SA(.) denotes
i ; the linear contraction semigroup gencrated by -A) in X.

v

Lemma 2.1. For all U, DA (D)) D{A) + G(N) and f . Ll(O,T;x),

t
uy(tug ) = S (E)u) + T(E) + {) J)s)(t - s)f(s)ds , ¥t . [0,T] , where
-t/ 1 t -7
1) = 16(e) - e A 3 [ as (t - s)iGs) - e Y han))as .
)

N R, < pep s

rRemark 2.1. This representation permits us to define a "generalized" solution of

(PP)t for all v, X, since S)(t) is a contraction defined in the whole space X.
-15-
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Proof of Lemma 2.1.

Set u(t) = v(t) + G(t). Then problem (PP)t can be rewritten as

a Z -
I G+ £f , v(0) =nu G(0)

(v + MAV) + Av = o

> |

and by proposition 1.2

d
EV+A/\V_

> |

JAG+J)‘f ' V(O)=u0-G(O),.

An easy verification shows that w(t) = e_t/AG (0) is the unique solution of

—d—-w+Aw=--l-Je_t/)‘G(O) , w(0) = G(0)

dat X XA

Adding the two previous equalities we have

4 w- e -e i) + A - [Gee) - e s =

dat

t/

*60)] + 3£

> |

J)‘[G(t) -e

So that by the theory of linear contraction semigroups [16]

t
ale) = s (B + G(e) - e g1 + L[ Tt - s)ets) - e c0)1as +
Ao Xy A
t t
+ fo 3,5,(t ~ s)f(s)ds = S (Ehug + o(t) + fo 3,5,(t ~ s)f(s)ds

This is the desired representation.
Now let C be a closed convex cone in X with vertex at zero, i.e. if

X,y « C, then ¢tx + sy ¢ C, ¥t,s ¢ R+, and assume that A satisfies a "maximum

principle" in the form

(2.1) Jccc vy >0 .

Then from a result of [10) we have also

(2.2) Sx(t)c cC , V¥t e [O,T] .

-l16-
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PROPOSITION 2.1. The following statements are equivalent
(i) Vuo € D(A) + G(O) , Wf “ Ll(O,T;X)

(u0 £ C , f() « C a.e.t © [0,T}) =

= (vt . {0,T) , uk(t,uo,f) - C)
(i1} %t « [0, TY , ¢(t) - C

Proof of proposition 2.1.

The implication (ii) = (i) follows easily from the representation of
u)(-,uo,f), (2.1) and (2.2). For the opposite implication, consider a seguence

{ug} -0 in X and ug ¢« Cn D(A(0)), ¥n ¢ N, For instance we mignt take

uo = Jl/no' We have

n B n ., .
ux(t,uo,O) = S)‘(t)u0 +&(t) ¢ C

Since C is closed and Sx(t) is continuous in X, the proposition follows.

The following corollary, which is a direct consequence of Lemma 2.1, provides
a sufficient condition on the family A(t), to insure that ul(t,uo,f) < ¢ for
all t < [0,T).

Corollary 2.1. Suppose that for all t ¢ (0,T], (I + ) - Y

Then for every f ¢ Ll(O,T;X) with f(t) € C a.e.t ¢ [0,T], and every

u, ¢ C n D(A(O)), ux(t,uo,f) € C for all t ¢ [0,T). Moreover

-t/
Yo

0

ux(t,u £) - e ¢ C, for all t ¢« (0,7

0

Proof of the corollary.

From the definition of A{t), it follows that G{t) satisfies
G(t) + MA(t)G(t) = 0, in X for all t < [0,T]. Therefore the assumptions of the

corollary are equivalent to

. Git) - e %0y - c .

-17-
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By the invariance of J, and £, with respect to ¢ we have that 2 (t) - C for
all t < [0,T]. From the representation of u\(-,uo.f), we have
t/n 1. .nth -ty
- - U (L t .- .
u\(t,uo,f) - e u, =l (\ I s e u0 + () +
n~1
t
+ % J\SX(t - s)f(s)ds . C

This proves the corollary.
PROPOSITION 2.2. Let f ¢ Ll(O,T;X), with f(t) ¢ C a.e.t ¢ [0,T] and assume

that
Ge) + e -GN e .
Then ul(t,uo,f) ¢ C for all t ¢ (0,T).

Proof of Proposition 2.2.

Consider the representation of “A("uo'f)' We have

n
_ 1 _nt -t/a -t/h,
s, (Ehuy + 8(t) = ngl 30 e uy + [G(E) +e (wy = G(0))) +
t t -s/\ J
1 -s/ ) d by
+ Y JA % SA(t - s)[G(s) + e (uO - G(0)))ds + sk(t) % 35 e uods =
-t/X 1 t -s/ X
= 6t) + " - g1 + 33 [ s (k- )6 + e P - Gonas =
A 0 A [o]
= H(t) .
Therefore
t
u (Eu,£) = HiE) + )‘0 3,8, (t - s)f(s)ds

The assumptions imply that H(t)

™

C for all t ¢ {0,T)]. Hence uA(t.uo,f) € C

for all t ¢ [0,T].

i -18-




B, Applications to boundary value problems

We consider here the case when (PP)t represents a partial differential equation
with certain boundary conditions, and we give, in particular cases (including (E)},
necessary and sufficient conditions on the boundary data, to insure a nonnegative

solution.

P n . .
Let . be a bounded domain in IR which lies locally on one »ide of 1t= smooth

boundary T. L2 (::) is the space of square integrable real valued functions with

respect to the Lebesgue measure over  and Hl(;z) is the space of functions

2 v

¢ ¢« L°() for which each of the (weak) partial derivatives Dj = —5;("- belongs to
j

L2(.;), L -3zn. If Dy is the identity in ? (), the nom in Hl(;.) can be

expressed by

1/2

lllel(Q) = {

~33

o ¢!
o0 9 12

k
The spaces H (2), k > 1 integer can be defined analogously. If we denote by v,

/2 (T) 1is the

the trace operator, restriction to I' of elements in Hl(.Q), Hl
1 - .
range of ¢ and HO(S.') (dual H 1(.”:)) is the kernel of +v. We refer to [l] for

more information about these Sobolev spaces.

For u - D'(3) define
n n
u=- J fa.&xu ) + § b {xlu +a lx)u
=0 Moxm Xy g b0

1 - -
: { - 4] i
where a5 - (), bi' a, C{2) and satisfy

n

2
a, >0 , ) a.ee. . >vEl", veo .
° i,5=1 1317
Here |£| denotes the euclidean length of the vector (51,...,5n) in ®".

I vix) - (vl(x),...,vn(x)) denotes the outward unit normal to I, we

denote with

-19-
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n

) a. . Js
L .5 .2
51 1%

the conormal derivative of u with respect to L.

Let T = Fl " 72. N F2 = + and consider the linear operator A defined b

D(A) = {u -~ Lz(n) : Lu - Lz(;) y vl 0y =0, s = e
1 72
Au = Lu
If ap 2 o4 > 0 and a, is sufficiently large then L is coercive in L2(i) and
A is m-accretive (maximal monotone) in Lz(Q). See [7, 17, 21) for details.

A satisfies the following "strong" maximum princinle:
2 .
VuaeL°(Q) , (u>0 , ugo)~= (un >0 in )

In particular the closed convex cone C of the nonnegative functions in LZ(J)

is invariant under JA'

(a) The case of Dirichlet boundary data.

Here we suppose T, = ¢ . let g € C([O,T];HB/Z(F)) and consider the family
of operators ({A(t)} defined as follows:
te[0,T)
DIA()] = {u « L2(®) : Lu € L2(2) and Y((t)) = g(t) a.e.t ¢ [0,7)}

Alt)u = Lu .

Let G{t) ¢ C([O,T];LZ(Q)), G(t) ¢ D[A(t)]} ¥t ¢ [0,T] be the unique solution of

G(t) + ALG(t) = O
2.3 {

Y(G(t)) = g(t) on T

Then the operators A(t) are of the form described in part A, that is

D[A(t)) = D(A) + G(t) and

Vo ¢ DIAM)] , A(t)u = Alu - G(E)) - T G(e)

L -20-
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2
Therefore for all UO -~ D(A) + G{0) and f . Ll(O,T;L"(”)) there exists a uni jue
solution of
{ u « C([O,T];LZ(:.)) , u + “Lu - wl'l(O,T;Lz(f.))

—i-(u + Alu) + Lu=f , u(0) =u

3t 0

Moreover the solution, which will be denoted by u\(-,uo,f) can be represented as

in Lemma 2.1, namely

= - TE/
u e £) = 5, (Buy + (6(E) - e TG0 +
(2.4)
1 £ -s/ ) £
+> [ 35 (t-s)Gs) -e “g0)lds + [ IS (t - s)E(s)ds
A 0 AA 0 PR

Remark 2.2. We will comment later on the meaning of the representation (2.4),
The results of the previous part A carry over to the present situation if we
; : , 2.
choose C to be the closed convex cone of the nonnegative functions in L7 ().

In fact we can obtain more precise results.

Theorem 2.1. The following statements are equivalent:

(i) Vuo e DA) + G(0O) , ¥f ¢ Ll(O,T:Lz(Q))

fu >0 , f£(t) >0 a.e. t ¢ [0,T)) = (ux(t,uo,f) >0 , ¥t . [0,T])

0
(i) ¥t ¢ [0,T] glt) >e “g(0) .

proof of Theorem 2.1.

In view of (2.3), G(t) =~ e-t/xG(O) satisfies

6it) - e Y01 + aicie) - e 61 = 0

yIG{t) - e't“c(o)] = g(t) ~ e-t/)‘g(O) >0

~21-




Therefore by the maximum principle (ii) implies G(t) - e_t/‘c(o) ~ 0. Hence the

implication (ii) = (i) follows from (2.4). Now let (i) hold and consider Llle
representation (2.4). By Proposition 2.1, 3(t) > 0 ¥t . [0,T] and u\(t,un,f) >

> S‘(t)uo, vt « [0,T]. It follows that
- A

(2.5) w ttu £ -e ¥ s 7 &gt
N ¢] > 2
Hence

-t/ t/

vou, eu,E) - e M) = g - e 'g(0) > 0

The next proposition supplies a sufficient condition on the data Uy and g(+)

on the whole parabolic boundary of 9 x [0,T), ¢to insure that u>(t,uA,f) > 0.
A v -
1 2 .
PROPOSITION 2.3. Let f  L7[0,T;L ()], with f£(t) > 0 for a.e. t ¢ [O,T],
and assume that

Git) + e't”(uo - G(O)) =0 vt < [0,T]

Then ux(t,uo,f) >0, vt « [0,T).

Proof of Proposition 2.3.

This is the content of proposition 2.2.

Remarks 2.3. (a) Proposition 2.3 contains as particular cases two different kinds

of results:

s -t
(i) If G(t) >e “Gwh then uﬂtmwf)zo for any u_ > 0 (Theorem 2.1)

0

(ii) 1If Uy > G(0), then ux(t,uo,f) >0 for any glt) >0

The latter case was observed in [20].

(b) Since uy € DIA(0)], Y(uo) = y(G(0)), hence the assumptions of the proposition

imply that we must have G(t) > O.

PROPOSITION 2.4 (Strong maximum principle). Let f - L1{0,T;L2(Q)] with

-t/A

£(t) >0 a.e. t < [0,T], ug 2 0 and assume that gi(t) > e g(0). Then if either

=22~
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U or £ 1s not identically zero, we have

-t
u\(t,um,f) e uo vt . [0,T]

Proof of Proposition 2.4.

If u, £04, Ju, + 0. Hence in this case the proposition follows from (2.5).

If £ 2 9 the proof is similar, starting from the representation (2.4).
Remark 2.4. This result was observed by Ting [23] for homogeneous boundary data
and for Uy 0 in . It also answers a question raised in [20] on the possibility
of a strong maximum principle for pseudoparabolic equations with nonhomogencous
Dirichlet data.

We comment briefly on the representation (2.4). For simplicity we assume
£(t) O,

Setting

0
] =
{ sk(t)u0 '

R . 0 . .
it is easy to verify that U is a solution of

d 0 o} 0
—_ 3 =
3t (U° + ALU) + LU 0

t/

() L’ = Y2900

0
{ uon) = u0

whereas $(t) satisfies

d
fcﬁ (¢ (t) + AL&(E)) + L) = O
() 1 AMe(E)) = gle) ~ e't/*g(o)

[ $(0) = 0 .

Therefore the solution u)(-,u 0) can be separated into the solution U0 of the

0’
pseudoparawolic problem (Pl), and ¢ (+.) solution of a pseudoparabolic problem with

homogeneous initial data (Pz).

-2 3=




In order to single out some features of this kind of eguaticn, we ol o

C s n : n
few limiting cases. Let u. -+ be a sviuence converging to zere in 1T 0,
n n N . . .
u, - DIA(O)]), ¥yn . N and let u (t,u ,) he the corresponding solutinns i
(2.4).
I. gft) - 1.

In this case we have

s/
Jus

t
nooy o n -t/3 1, ] .
ux(t,uo.O) = S)(t)uO + (1 e )+ T ] J;Sz(s t) (1 e

0

and for all n ¢ N, y(u‘(t,ug,o)) =1l. As n -+ «, u)(t,uz,o) converges to the
A \ )

"generalized"” solution of

4
* {fu + XLu) + Lu = 0

yw =1 on I , w(® =90 ,

which satisfies y(u(t)) =1 - e—t/* on T,

Therefore the limit solution does not follow any more the boundary data.
fact has been observed in [11}.

t/

I g (t) = e Agl(o) ;9,10 > 0.

In this case Gl(t) = e_t/xsl(o) and by (2.4)
1 n n
0) = t
uk(t,uo, ) SA( )uO

’t/

1 n _ A
y(ux(t,uo,o)) e gl(ﬂ) >0

As n » », u§(°,ug,0) +> 0 in LZ(Q). Therefore the "generalized" solution of

51-(u1 + xLul) + Lu1 =0

This

dt
vaten = e g (@
ul(O) = 0 .
-24- )
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is the identically zero function, in spite of the fact that the boundar; dat |

adea alr
positive.
I1I. gz(G) o , gz(t) >0 for t - O.
Since u, : 0 - D[A(0)] the problem

u - c([o,'r];Lz(:‘.));u + <Lu . IJl'l(O,’I‘;L2(.))
ey (u + ALu) + Lu = 0

yi{u(t)) =92(t) ~ 0 t >0

u(0) = 0

admits a strong solution ui(',0,0) given by
t
2 1
ul(t,0,0) = () =G (t) + = [ J s (t - s)G, (s)ds

X 2 X o 2T 2

Since %¢)>O for t > 0, $(t) > 0 and hence
2
uA(t,O,O) > 0 ¥t > 0

Consider now a datum O < 92(t) < e-t/xgl(o) where 91(0) is the datum in case 1II.
Then the previous remarks show that
ul(,0,0) > ui(t,o,o) 2o .

in spite of the fact that the boundary data satisfy the opposite inequality.

These facts are in striking contrast with the behaviour of the solutions of

the classical heat equation.

(g) The case of Neumann boundary data.

Here we assume rl = ¢. Let p . C([O,T];Hl/z(T)) and consider the familvy

{a{t)} defined as follows:
teio,T)

«25«




nlA(E)] ) LS{ ) : u=gplt) , Lu. L9{):

alt)u = Lu
(see {17] for details)
Let G(-) C((7,T1;°( )), 5(t)  DIA(t)] ¥t : [0,T] be the unigue solut:on
of
G(t) + \LG(t) = 0

-LG(t)=p(t) on T , ¥t. [0,T]

Then the operators A(t) are of the form described in part A, that is

DIA(t)] = D(A) + G(t)

Yu . D[A(t)] , A(t)u = A(u - G(t)) - lTG(t)

Therefore for all uy - D(A) + G(0) and f - Ll(O,T;Lz(i)) there exists a

unique solution of

u . c([o,Tl;Lz(n)) , u + \Lu wl'lto.T;Lz(n))

3 N
—t(u-l»)\Lu)-l»Lu-f,u(O)—uO i

Moreover the solution, which will be denoted by u, (t,uo,f), can be represented as

in (2.4) with the obvious changes in the meaning of the symbols.

PROPOSITION 2.5. let f . Ll(O,’I‘;LZ(Q)) with f£() >0 a.e. t ¢ (0,T],

-t/

uy - DIA(0)], uy > 0 and suppose that plt) > e p(0) a.e. on T and

¥t ¢ (0,T}]. Then

~t/A
u)\ (t,uo,f) >e / uo ¥t ¢« (0,T) .
Moreover if either uO or f is not identically zero, then
-t/x

ux(t,uo,f) > e / u, :

i

-26-
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pProof of proposition 2.5.

For all t . [¢,T1, () - e_t/::(O\ satisfies
-t/ ~t /0
ey - e 5+ L) - e Y g = o
(2.6)
-t/ -t/
'L[G(t) - e v/ G = p(t) - e /\p(O) -0

Therefore by the maximum principle, Gt} - «

n

nt -t/X
— e / u
n! Q

-

-t/ ¢ 1
uy(eug ) - e u, - g 3 I
n

t
+ f J)Sx(t ~ s)f(s)ds > 0 .
The second statement is obvious.
The assumptions in Proposition 2.5 do not impose any signum restriction

: - -t
on pi{t). In particular plt) could be negative, as long as plt) - e /)

Remark 2.5.
p(0).

e -t .
Remark 2.6. The condition p(t) > e /xp(O) is not necessary. In fact the

following weaker assumption on p(t) is sufficient in order that (f(¢) >0 ,

u, = 0) = (ux(t’uo'f) > 0

For all t - {0,T] 1let ¢h(t) be the solution of

! ¢h(t) + xL¢h(t) = 0
2.7)

L2 +
aLvh(t) =h{t) >0 , h - LD .

Then G(t) - e-t/xG(O) > 0 [and hence (f > O, u0 >0) = uA(t'uO'f) > 0)] if

3

[ ) = e oyt (€)do 5 0
r

(2.8)

| forall nzo , nedd@® .

-27-
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Indeed by multiplying (2.6) by ;H(C) and integrating by parts we ar. 1.3 ¢

the identity

t/ t/

[A6E) - T aohas = [ (pie) - e piol iy, (t)1a-

r

N
Therefore if (2.8) holds, from the arbitrarity of h . L"(T)+ we deduce

-t/
viee) -e ¥ 20wt . (0,1
: . . . -t/
t This together with (2.6) implies G(t) - e G(0) > 0.
Remark 2.7. The condition (2.8) is in fact weaker than p(t) - e-t/'p(O) > 0.
This is shown by the following counterexample.
a2
Consider L = - - in (0,1), A = 1. Then all the solutions of (2.7) are
3IX
given by
(2.9) ag " Bchx - Ashx , A >0 , Btghl > A
’
The function
(- % r X=0
p =
1 f e
ST ¢ ¥ < 1 on (0,11, satisfies
P Y >0 for all ¢ given by (2.9)
310,17 A,B A,B
The above can be restated by saying that the cone (y(;h) ;7 h . L2(T)+1 is

not dense in L2(F)+.

Remark 2.8. It is not difficult to show that a necessary condition is the following:

t

((£>0 , uy >0 =u t,u,f) >0]= jo fr p(1) - e

b (0)1dodr > 0

Remark 2.9. Results similar to the ones in Theorem 2.1 and Propositions 2.3-2.5,

can be obtained for the case of mixed boundary conditions.

~28-
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(v} L_(-estimates.
We briefly indicate how the previous results can be used to obtain a prior:

estimates on the solution.

For simplicity we take A = -A and f = 0, and consider the problem
S lut) - ault)] - auft) = 0 in L2 ()
at u = in .
(2.10) v =gl - cio,7 = w20
l\u(O) =u, ‘.'(uo) = g(0)
Set
" _ -t/
sup |} 248 e—t/)\ {0) H - mem)
t:[0,T] l~e

©
L (T
PROPOSITION 2.6. The solution u of (2.10) satisfies the estimate

Tue) < max {M(T) ||uO ., ¥ .+ vt (0T
L () L ()

Remark 2.10. The quotient

_-th -t/
i(t)l e-t/{;(()) = g(t) + I—e_?{/—)\- (g{t) - g(0))
-e -e

converges to g{t), t - (0,T] as X + 0. Hence for ) = 0, as a limit case we

find the known estimate

Hucer )] - <max { sup {lgtt) ]| - , ”uo i .
L () tc {0,T] L (T) L (D)

for the solution u of the classical heat equation.

Proof of Proposition 2.6.

set k = max{M(T), ”u0 Il w 1+ If k=« then the statement is vacuous.
L (@)

let then k <=, and set v =k ~ u. It is immediate to verify that v solves:

«20~




é%-(v - W) =~ v =0 in T ox (0,T)

y(v) = k - g

V(O)zk-uoiO B ylvo) =k - g(n)

For the particular choice of k, y(v) satisfies

yiw e > e e

Hence by Theorem 2.1, wu(t) <k in 2 x [0,T]. The bound from below is derived

analogously.

An estimate of the same nature can be derived on the gradient of

u.

u satisfies the first of (2.10) and assume that we are given the functions

/2

2 = p ) o, Y2y . set
i
P (t) - e % (o)
RN LUl
tel0,T) 1l -e -
l<izn L ()

Then u, 1< i <n are solutions of

9 _ _ < .
* (ux. AAux‘) Aux’ 0 in Q x (0,T)
i i i
Y(uxi(t)) = pi(t) ¥t < {0,T]
ux.(O) = uO .
i %

i
From Proposition 2.6 we easily deduce the estimate

Hqu(t) | < max {M(T) ; gl 1
L () L (@)

Estimates of the same kind can be obtained for more general operators

f # 0. However they fall beyond the scope of this work.

=30=
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! e ( i) e A £, u(™y = u0 ;o Au(d) = L
wien. A iooa tenlincar jerturtation of -'. Let - be a maximal monotone operator
. , . N .
M Fowath (2o (7]) and a bounded open set in R , We successively
PRI
®
" . 1 .
' \ - i () , that is:
R L1 . 1,1 : .
STy LTy pdEh o WU () with we=-xh, h(x) - a(uix)) a.e. x: .
. 2 Ju N . .
(v T Y s oa H ¢y , - el 3{u) a.e. on . , w= -Aul .
"« " an L°( )y , that is:
' - n
[ Tty 3h L°( ) with -Au+h=w , hi(x) . s(u(x)) a.e. x' .
L 1 2. 2, .
¢« aerator- are meaccretive in  L7(.2), L (I}, LT(2) respectively .

1%} and satisfy the maximum principle in various forms (see [9), [5])):

. '

lasr, if 1 is the solution of the associated parabolic equation:

8l g% + Au f , ulo) = vy
tian: (3 ©, £ -9} = (u(t) - 0). This is not generally the case for the

e

solutions of (PP): here, we give in each of the cases (a), (b), (c) a necessary and

sufficient condition on ¢ in order for (PP) to have such a property.

A) Case (a): A = "=4/

This case is a "good" one in the sense that (PP) satisfies properties of

maximum principle without any extra assumption on R.
we denote by A the m-accretive operator in Ll(Q) defined in (a). By the

results of the section 1, for £ - Ll(O,T;I}(Q)), [uo,wol ¢ A and X > 0, there
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exists a unique solution of:

—_ - 3rin - AUp = = -l =
(El) 3t (u rARa) A f , uln) u , Liu(n) w

wWe denote it by u)(-,uo,wo,f).

Remark 3.1. The equation (El) represents a model of diffusion in fractured porous
media and also a nonlinear model for a two temperatures theory of heat conduction
(see Showalter {18]).

PROPOSITION 3.1. The following implications hold:

(i) (u, >0 , £ > 0) = (¥t < [0,T] , ¥w. < Au s u_ (t,u
- - A

0 0 0 Woef) 20)

0

(ii) ([uol < k) = (vt « [0,T) ;o VW, e Buy fu)\(t,u

o Myr0) < k)

0

Remark 3.2. We note that the results above carry over to more general situations.

Namely they remain valid for equations such as

3
3t (u = AA%u) - Ava sy £

’

where vy 1is another maximal monotone graph with 0 ¢ y(0). Moreover -£ could be
replaced by any linear operator L in Ll(Q) satisfying the following "maximum

+ .
principles” (Here sgn denotes the maximal monotone operator defined by:

0 if r <0
+ ;
sgn r = (0,1} if r =20

1 if r >0)

Vu ¢ D(L) ., W¥w ¢ LO(R) with w(x) < sgnu(x) a.e. X -
™)
waulO

Q

¥k >0 , ¥u e D(L) , ¥Yw ¢ LQ(Q) with wi(x) « sgn+(u(x) - k) a.e. x . >
M)

f wlu>o0 .

Q

In [9), it is shown that (M) is satisfied for operators such as:




n n
Lu=- 7§ faj g 00w, )+ ] b o) s,
1,] 1 J i=1 1
with D(L) = {u ¢ Wé'l(:z) ; Lu ¢ Ll(,‘z)} and:
a b, ¢ Cl(a) € Lm(ﬁ) a. >0 + 5 (b)) > 0 a.e
ij " i e 3y e B 20 8y ok =

Maximum principles of type (M) for nonlinear operators have been extensively
studied in (5] and (61.
The proposition is a particular case of the following results which holds

for any measured space 2.

Theorem 3.1. ILet L be a linear operator on Ll(.",), i, ¥ two maximal rionotone
graphs in R xR containing the origin and f < Ll(O,T;Ll(‘,)). Let

u € C((O,T];LI(Q)) satisfying:

ah , hoerlo,mrt ) with h(t) < () , Bt < - @E) ae. €

n

hit) , A(t) ¢ D) a.e. t , u+th « v lmet))

-1 N
E(u+ ALh) + Lh = £ .
Then:
T (1) 1f L satisfies (Mo):

() >0 , £>0) = (vt . [0,T] , wult)

| q

(Jut@)| < k) = (wve . 10,T) , 'uit)' <k

)/
=]
=

: (ii) 1If L satisfies (M) and f

i

Proof of Theorem 3.1. !
Formally, the idea of the proof of (i) is to multiply the eguation by
sgn ()\ht +h) = "sgn (1a° (u)ut + 3y uN", whexre sanr = sgn+(-r\.

We will do this in an approximated way. For « ~ 0, set

(3.1) nit,r) = 2, + LA(EY ~ f£(t)

iy by

uft) = uft -~ ) \L ht) - ‘.1.(t - )

X
1
1
1

————— . . -



As u + Lh Wl'l(O,T;Ll( )), (3.1) and the ecuation vield:

T
(3.2) lim [ e, =0
. .
N
For t and . fixed we consider w L.( } delined by:
{ .
"1 on (h(t) n] (th{t) = o1 = [ult) ~ 0])
w = * ‘
L0 on fhit) - 0]  ([h(e) = 01 lule) - 01)
Then w - sgn-(ﬁ(t)) and since hi(t) y(u(t)) a.e. on
(3.3) w s uft) = -u (t) a.e. on
Next let w - Lm(’) with w sqn  ( hiﬁl_:_plf_:_il 4 .(t)) such that w = w on
(h(t) = h(t - €)}]. Since h(t) S{ue)y, hiie = ) S(ul{t - <)), the monotonicity
of sgn- gives:
(3.4) ult) - :(t - ¢) w z uft) - ?(t =) w a.e. on
Multiplying (3.1) by Q, integrating over ' and taking in account that f > 0
and the condition MO' we obtain:
(3.5) _ f [nee, )] f uft) - uft - ') o

The inequalities (3.5}, (3.4) and (3.3) imply:

1
€

- I, 2 % (=u (&) - wult - #)) f vie-a - [ o wen
@ . l
Letting ¢ =~ 0, by (3.2) we have:

a ey e n in e
e {) W) <0 in D(o,TD

This proves (i).
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The proof of (ii) is exactly the same. We multiply (3.1) b+ a suitable

selection w out of sqn+[\ hie) - nte - =), n{t) - 3) where = - - (k) and
k » 0 1is to be selected. First we choose w « sgn+(ﬁ(t) - %)  such that
(u(t) - kK)w = (u(t) - k)*; then we select w with the regquirement that it agrees
with w on the set [(h(t) = h(t - :)]. Then, the same computation as above gives
(this time we use (M)):
PR - t - ¢ - - ~ , .
j ale) - ult - o) L_X( ) W« f u—(t)————U(t——E) w o f nlt, )
~ < BN 3 - .
This implies
Lif ey -0t - e -0 - 0% <[ a0l
£ . - .
when : goes to 0, by (1) we obtain:
d + :
EI fu(t) - k) <0 in D' Q0O,T()
Choosing k = l[u(0) I!  in the above gives a bound from above for uf{t). The bound

from below is found analogously.

B) Case (b): "A = "-2" with nonlinear boundary conditions

Here  1is a bounded open set with a smooth boundary T and £ a maximal
monotone operator on R x R with 0 « g0 (80 denotes its minimal section). Then

the operator:

A= ffuwl - L2 x L2 s u- B, pumw, - Bt ae o 1,

where ;n denotes the outward normal derivative on ', is m-accretive (or
: 2 . .
maximal monotone) in L7(7) (see [8]1). By the existence results of the section 1,

for any ug D(A) and f - I.-]“(O,T;L2 (7)) there exists a unique solution of

{ % (u~ puw) - pu=f , ul(n) = uy O > 0) ﬂ
(Ez) - ?‘
L= P Z(u) a.e. or I' ., g
wWe denote it by u)(t,uo,f). ?
§
-35- i
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Theorem 3.2. The following statements are eguivalent:

(i) Vuo . DI(A)

(W, = 0) = (v¢ . [0,T] , u (t,up,2 -9
()

(ii) The application [r = 10,=( D(z) -~ L~;——J is nondecreasing

cs 1 2

(iii) Vuo - D@y , ¥f - LT(0,T;L7 (1))

g 20 , £>0)= (¥t [0,T] , u\(t,uo,f) > 0)

Moreover, if (ii) is satisfied:

(iv) (uo >0 , £>0 and u, 20 or f £0) =

-t/
=t kg, £) > e P ve s g0,

Remark 3.3. It is rather surprising that (ii) is the necessary and sufficient
condition for the property of maximum principle (i). Even more surprising is that

it is independent of ). Note that:
0 .
(3 convex on [0,]n D(8)) = (ii) , and
(15) = wr,s € (0,00 , 8% + ) > &%) + O(s))

Moreover, it is easy to verify that B8 satisfies (ii) if and only if its

Yosida approximations do. This is equivalent to:
¥y >0 a.e. B (r) <rB'(r) .
iz ’ u = U )

Of interest is also the following proposition which supplies a condition on

u,y (independent of R) that insures the nonnegativity of u\(',uo,f).

PROPOSITION 3.2. Let u, ¢ D(a), u

0 >0 and let G be the solution of

0

G- MG=0 , G=u a.e., on 3 .

(uo >2G) = (¢f >0 , ¥t e [0,T] , u\(t,uo,f) >0)
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Remark 3.4.

2.3 here for the case of Dirichlet boundary data.

In particular, if u, = 0 on and

0

T uo >0, then

i

any extra assumptions on

The main tool in the proof of

proposition also true for any B. (We denote vt o= max (v,0)).
PROPOSITION 3.3. Let . 60 ¢ D(A) satisfying:
Jdu 3
= 1 __9.= __2 T
Uy = u, and n n a.e. on
Then if u = ux(-,uo,o) and u = uA(-,uO,O):
-t ” - " -
[[Ttu - e /xuo) W0 -e t/xuo)]+ I 2 < (sinh %—)H(uo - uo)+
L (Q) )
In particular:
-t - -t/ X t -
||(u-e/)‘uo)-(u—e/xo)]|2 i(Si“h’{)H“o'“Oiz
L™ () L
uy 5_60 = u(t) < Gl(t) vt
llute) - @) || , < teosh $ollug - 8ol
L™ (Q) L™ ()

Remark 3.5.

The condition above is similar to the one in [20} or in the rroro

u, (tu,, )

without

(i) = (ii) in the theorem 3.2 is the next

As in remark 3 of the section 1, let us denote s)‘(t)uO = ux(t,uo,o)

the “"pseudoparabolic semigroup” associated with A. For any [h,k] « H3/2(F) x Hl/
with k ¢ B(h) a.e. on 232, we set:
Buo
Dh,k={uoeD(A);u0 an=h . -3_“3_7=k}
Then the proposition 3.3 says that the restriction of s\(t) to any Dh,k is
a Lipschitz-continuous application from Dh,k into DI(A). Since Dh,k is dense
in LZ(Q). any such restriction can be continuously extended to D(A) = LZ(T). in
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general for nonlinear - such extensions might be different as shown by the

ccrollary 3.1 and their value at 7 might be different from 5 {£)0.

“

Moreover, this i roprosition savs that the restriction of {t) to each T

h,k
is nondecreasing even though such a jrorert: nced not be true for & (t) itself

\
even if . satisfies condition (ii) of theorem 3.2,

The proof of these results emplovs an integrated form of (E;) as given by the

following lermma:

Lemma 3.1. Let u be the solution of (E ), then v = u - c-t/)u is the solution
of
t
, 1 . —t) s -t/
(vovved ATy v e s BT
0
. o]
(%) |
o2 v+ uy-e™™ % ae. on .
{ n 0
Ju
where ko TS :(uo).
Proof of lemma 3.1.
We write (Ez) as
. 1
< fu=11r) +# - (@= +*u) = % (u + 2 f) ,
: t/ . :
multiply by e and integrate over (0,t) to obtain:
-t/2 1 t - B
u(t) - ) = e wy = ) + 5 T W) v eeNas
0
. =/3
By setting u(s) = v(s) + e u, the lemma follows.
Proof of the proposition 3.3.
3/2,.. 2, :
For (h,k) H / (") Hl/ (") with kx . (h) a.e. on T, given t < [0Q,T)
fixed, consider:
-38_
- —




2 -t/ ~t/n
N I e B BN e R O B R T IR I
a.e on T, w= -4V
}“o
et u. . D(A) with u_=h and - — =k 2.e. on T (such an u always
0 0 an 0
exists - see [16] -). Then:
- -t/
[v,w] - At o [v + e t/\u0 , We-e / Auol ;. A
t , . 2, L e , .
p Hence A is maximal monotone in L (3} and v satisfies (x} 1if and only if:
t. -11 t((‘—t)/) t t/ 2
(%) V=T +a) T f e T wis) + Af o v Te )
" \
. A t
Since: W¥Wv, ¥ ¢ D(A)
. - - - -t/ . -t
[ w-9taw - =] w-9T6rv+e - cwre™Mm 20,
32 r
we see that
- t t .
Vv,v ¢ D(At) B f (v - v)+(A v-Av) >0

Q

Therefore, if v = (I + \At)_ls and v = (I + XAt)-lé, multiplying

v-0+>\(Atv—At\})=e-e

.+
by (v - v} , we deduce:

A+ P
fow-o"10, =< lte-8"1|,
L () L7 (Q)
R A uy Al
Now if u0 and uo satisfy uo = “0 and n = -5;- a.e. on [, and if
- . - -t/ A
vit) = uA(t,uo,o) - e t-'/)‘uo, vit) = uA(t,uO,O) -e /Au by lemma 3.1, we have:

OI

t
ve=(I+ mt)_1[£ fe(c-t)/)‘v(o)dc + £ e-t/xu ]
X % ) 0
. t,-1 1 S(o-t) /2 t -t/)
ve=(I+X) [+[e vi{ocldo + T~ e ul o,
A ) 0
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t . . .
for the same operator A . Hence, from the above inequality, we obtain

t .
o= a* W < Nw-wnt (da + S v - ant
2 - ‘ o2 X o 0 2

L™ (. 0 L () L)

Since %—e’t/\ <1l- e-t/), this proves that /(v - Q)*!f 2(t) is majorized b
) L
R t ~
¢(t) = (sinh +). I, - ug) | , + the solution of
L™ (Q)
1 -t/ +
i olt) = jo 0(o)ds + (L - e " [juy - 4,) HLZ

This gives the first inequality. The others follow.

Proof of (i) = (ii) in theorem 3.2.

su

0
Let u_ ¢ D(A) be fixed with -—n°=kOE B tug), u

0 3 >0 and let (,:n) be a

0

S 3
nondecreasing sequence of nonnegative functions in CO(Q) converging to 1 a.e.

in Q. Then setting W= u (- Rr o converges to u. in Lz(;“.), and for
o] 0 n o] 0
all n ¢ N,
au" u
n 0
uy = Y, and-an—-—an—-ko on T

set u = u}\(-,ug,o) and v = u" - e-t/)‘ug. Then by the proposition 3.3,

o converges in C([O,T];L2 (R)) to v_ and by (++) (see the proof of proposition

3.3):
£-11  (a-t)h
vty = (IT+2) (e v_(a)dol
© )Y )
0
where At is the operator "associated" with uyi that is:
1 (-t
v (t) - av_(t) = = [e v_(o)do ;
® A 0 o0 ;
(*), Q
av_(t) s
- —%n—- €Bv _(t) +e t/)‘uo) -e t/xko a.e. on 3 . !
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ERTea—

o~

o

s . n X n .
Now, if we assume (i), w (t) > 0 ¥n, ¥t and since uo converges to O in

Lz(n), u” converges to v in c({o,T];LZ(_i»))_ Therefore:

vt o (0,71 , v_(t) >0
Integrating (*)m over 0, we have:
-t/ 1 t( Y 3
[ v ) s af k) ek = f [TV (e,
® 0 A cy o 0

Q r

with k(t) ¢ s(vm(t) + e-t/)‘uo) (and koe so(uo)). Since vw(t) converges in

LZ(Q) to 0 when t goes to O, we deduce (assuming u, > 0 on T):

lim sup % f iBO(e-t/)‘uo) - e-t/)‘so(uo) <0
t-0" r
Now, let r ¢ 10,=[n D(8). There exists u, ¢ D(A) with ug >0, unz = r and

u
0 : : . . :
" m € Bo (r) (see {17)). Applying the inequality above with this choice of Uy

¥r >0 , lim sup % [Bo(e-t/)‘r) - e-t/\so(n] <0,
t->0+
and
0, ~t/) 0
vr>0 , limsuwp - (8% ¥} 8, ,
. t e~t/)\ r -
t+0
8% (r) % (r)
This and the next lemma applied to glr) = - imply that r =~ - is
nondecreasing on ]0,=[n D(B).
Lemma 3.2, let g : (0,a) >R possessing at each r < (0,a) left-limit g(r-)
and right-limit g(r+) satisfying
+
vr ¢ (0,a) gl{r) <gir) .

Suppose:

i
T
!
f
i
t
1
!




vr . (0,a) , liming $EZALZ )

h-o"
Then g is nondecreasing on (0,a).
Proof of lemma 3.2.
Set r, = inf {r . [rl,rzl i glr) < g(r2) + s(r2 - r): where + is an
arbitrary fixed positive number. To prove the lemma we will show that r, = r;.
+
If Iy < Ty < x, then by definition of r, and g(ro) < g(ro):
glry) = q(rz) + eflr, = x.)

g(ro - h) - g(ro)
Setting a(h) = T , Aabove yields:

glry = h) < glry) + c(r2 - {ry - ) + hilalh) = ¢)
Since 1lim inf a(h) < 0, there exists h > 0 such that ry - h - [rl,r2] and

hs0*
g(r0 = h) < g(rz) + c(r2 - (r0 - h))

This contradicts the definition of Ty Hence ry = ry.

As a corollary of the proof of (i) = (ii) in theorem 3.2, we obtain the
following: let Sx(t) denote the pseudoparabolic semigroup associated with A and
defined from D(A) into itself (see remark 3 in section 1); suppose R is

differentiable at the origin (for simplicity). Then:

Corollary 3.1. The semigroup Sx(t) can be continuously extended to LZ(Q) for

all t ¢ [0, if and only if 2 1is linear.

Proof of corollary 3.1.

From the proposition 1.2, sx(t) is a contraction for any t if 8 is linear.

Now suppose that SA(t) can be continously extended to L2(Q). Let

uo;D(A) and ug = uo(l - s’:n) defined as in the proof of (i) = (ii) above. Then,

un(t) = Sx(t)“g converges to SA(t)O = 0. But we also know that u" converges

t.



B AT TR A e R

R (t)

to v, solution of (*)m. Hence vm(t) = 0 and =0 for any t. As u

3n e
is arbitrary in D{(A), we deduce:
-t/ -t/
Ve - D), vk o) , vt. 0,0 , ek s n
This is also:
¥r « D(B) , ¥X . 10,11 , A3(r) < Z(ir)

This property together with the differentiability in 0 vyields the linearity of

Proof of (ii) = (iii) in theorem 3.2.

-t . .
Suppose u0 >0 and £ > 0; then v =u=-e¢e /Auo is a solution of (x) in

lemma 3.1. Multiplying this equation by v , we obtain:

t/x

t
-2 -2 - - -t/ 1 - -
jo vy + fQ (v ) () «_fr viiglv v e lu) - e k) 4 ;[3 vo(t) jo v (0)dn

By (ii), on the set Jv < 0] = IuO > 0]:

-t/X

t/) 0 -t/AuO) ie-t/xﬁo(uo) <ot

glv + e uo) < B (e

and on the set (v < 0] n [u0 = 0]

-t/x - =t/A
Blv + e uo) < B(O) <e ko (ko e 8(0)) .
Therefore
-2 1 - £ 1 .- t -
J w3 vy [ v iverfl, f Ve, 4 ,
.0 ) 0 L) o Lo ()

By Gronwall lemma, V¥t, v (t) = 0 and hence v(t) > 0.

If either £ £ 0 or u_ 20, as I - )A satisfies a strong maximum principle,

0.
from equation (*) we deduce:

vt >0 , wvi{t) >0 .
This proves (i) and (iv)

As the implication (iii) = (i) is trivial, the proof of the theorem 3.2 is

complete.
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Proof of Proposition 3.2.

Let us consider H the solution of:

3 -
Sp (- AH) - AH = f

-%s y{#}y , H(Q)

{where G is defined in the proposition) and vy

defined by:
¢ r
yi{r) = [0, =) r
0 r

The initial data u, - G belongs to H2 Q);

3 - .
and ug G >0 on Q n (u0 G) >0 on T;

the maximal monotone graph

noreover as uo -G =0 on

3
hence = (uo G) vy (0)

= y{u_ -~ G) a.e. on T and the problem above can be solved for H.

Since y satisfies the condition (ii) of the theorem 3.2 and since

H{(0) >0, £ >0, for all t ¢ (0,T), H(t) > 0. We will show that

u(t)

uA(t,uo,f) > H(t) for all t ¢ [0,T).
Set w=u -~ H and multiply by (w - Xaw)~

defining u and H to get:

the difference of the equations

[ o= amnT 2w 4 [ s T aw) = 0

) Q

since va,beR (a + Db < a-b, above yields:

13 -2 -
;gj;) (("'AAW))(t)i-);zwAwa_.,

R AR - SV RN,
T 0 T Q

w12 c-f JwwPco .
Q

Here we used the fact that k ¢ y(H) is nonnegative and h . &(u) is nonpositive

on the set (w < 0] = [u < H].




From the definition of w and H, we have w(n) - ).w(0) = 9, so that
above implies w{t) - jaw(t) > 0 for all t - {0,T]. This in turn implies

wi{t) > 0 and ul(t) > H(t) >0 for all t - [0,T).

Remark 3.6. The idea of the proof of u > H is the following: 1if two operators

Al and A2 are comparable {(in some sense) and if the "thermodynamic" data

ui(O) + AAiui(O) can be compared, then also the respective solutions Uy and u,

can be compared. Here we used the fact that I < vy.

C) Case (c): "A = =p + R"

_ Here we denote by A the m-accretive operator defined in (c), on Lz('),
(@ bounded). For any [uo,wol <A and f < Ll(O,T;Lz(Z)), there exists a

unique solution of

é% W+ )(=4u+ 2u)) - 2u+ u- £ ,
(E,)
futo) =u, , wy<-lu(d + u(0)

We denote by ux(-,u ,wo,f) such a solution.

0

Theorem 3.3. Suppose that either

(1) D(R) < (0,=[ , or

r :O(r) N
{ii) the map yr « 10,>[ D(3) » 1 = = + 1n r) is nondecreasing
N
Then
Vuo . DAY , Vwo <Au (o)
(iii)
(u0 S0, £~ (u\(t,ug,wo,f) ~0oFt [T
In particular if J(-) satisfies (ii) then
ey ot
u\(t,uo,“o,f) ~e uo

If in addition the map {r A FAPE (RERAN ) B S(r;\ ig single valued and

\
continuously differentiable, then (iii) = (ii).
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Remark 3.7. (a) Condition (ii) is similar (but weaker) to the condition (ii) of
the previous case B.

(b) Here we could also replace =-: with any linear operator L in L’ .,
satisfying the maximum principle () in 3.1.

The proof of the theorem employs the following integrated form of (E3). We

denote by hO ‘:uo that element out of the set L for which wy = -Auo + ho.
; -t/ X . s
Lemma. Let u be the solution of (E3). Then v =u - e u satisfies
1 £ (s=t)/)
(3.6) v - MV + Ay (t,v) - I f e "Av(s) + Af(s))ds ,
-0
where vy(t,v) = B(v + e-t/)‘u ) - e-t/)‘ th . + £ u_ )
0 o] )\2 o]

Proof of the Lemma.

We write (E3) in the form

2 [u + A(=au + Bu)) + % [u + x(-pu + Bu)] =» %-(u + Af)

3t
. t/x : :
multiply by e and integrate over (0,t) to obtain:
=t/
u(t) + A(-Au(t) + Bu(t)) - e (u0 + A(-Auo + ho)) +
1 F(s-t)/n
+ = fe (u(s) + rxf(s))ds .
A
0
-,/
Finally writing u(s) = v(s) + e 8/ '\uo in the integral gives (3.6).

Proof of Theoxem 3.3 (sufficient condition):

If D(B) ¢ [0,»[ the statement is trivial. Assume that (ii) holds. Then

0, ~t/X
8" (e r)‘*l._ln (e t/x

Vr > 0 —————= r) < —=+=Ilnr
-t - ’
e /Ar A r A

which can be rewritten as i




0, -t/}

-t/) -t/
¥r > 0 3 (e £/ < e t/ 30

) - 3% re (r)

“

Therefore if v is a solution of (3.6) with 4, > 0, then

[ saon’v . it,v) <0 , a.e. te [0,T) .

Now we multiply (3.6) by sgn-v and take in account that
f sgn_v(-Av) <0

and the nonnegativity of f(+), to obhtain

t
J v+ %-[ sgn v(t) ) és-t)/kv(s)ds <0
o Cx 0

Writing wv(s) = v+(s) - v (s) and majorizing the second integral gives

/ vit)ax < -i—

t
) f v (s)dxds
02

By the Gronwall inequality, this implies v (t) = 0 a.e. in # x [0,T].

Proof of Theorem 3.3 (necessary condition):

If 2(-) 1is continuously differentiable, we will show that (iii) = (ii) by

exploiting the arbitrariness of u_ > 0 (to assume £ = 0 will be sufficient).

0

We first prove the result under the extra assumption that £ is continuously

differentiable on [0,%) and :'(r) is uniformly bounded on [0,«).

Let B(22) be a ball of radius 22, (¢ > 0) contained in 7 and let r > 0
be fixed but arbitrary.

Consider a seguence of nonnegative C;(H) functions ug, n N such that
n
(a) supp 4y = B(22) , %n 1!
n .
(b) ug(x) =r , z-~B(:) , ¥ne eIl

=) 20 eeet0] in L2,

-
s

where ,2(.)] Aderoten the sharacteristic function of the ball B(,).
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n n
We denote u (*) = u.‘(°,u0,0) - 0.
2
Next we construct "test-functions" \fn as follows. let g L7,

be not identically zerc in [, such that

supp g - = . B{(2¢)

and let %n (t) be the unique solution of

(1 + 28" (@ (EN)e (&) - My _(t) = g in
3.7}

Y(v"n(t)) =0 on T

2
We remark that »;n(t) e C([0,T];L™(2)) since R'(+) is continuous on (0,=)

n
and u ¢ C([0,T] ;L2 (2)). Since q 2 0 by the strong maximum principle

\on(x,t) >0 in Q ¥t < [0,T] and ¥n ¢ N

Moreover it is easy to verify that ¥n 0) -~ @m(o) in I..2 (Q), where ¢ >0 is the

solution of

[1 + AB' (lr)(lli(o)])ls;‘°° - Me =g

yle ) =0

We multiply (E3) (written with f£(t) = 0 and initial datum ug) by ‘n and

integrate by parts, to obtain

/ u:wn + A8* (un)wn = Ay )dx = [ {uae - Blulglax =
Q Q

1;}'9 W@ + g (uh))¢n -9q) - XS(un);n‘dx

Here we used the fact that under the stated assumption on 3(¢), (E3) can be '

written as




d'dT (u - AAu) + .ff'(u)ut - 4du + 2{u)y =2

whose pointwise meaning is easy to justify.

By (3.7) above can be rewritten as

(3.8) f u:g dx = %j‘ [un(l + AB' W™y - )B(un)]cn dx - -]-'- f ung dx
N -
We observe that

t
j' f ung dxdt = f o (t)g dx - f un(x)g dx > 0
0 Q ¢ Q 2 °

pecause U >0, g >0, and the particular choice of g.

Therefore (3.3), and Q" >0 g >0 imply

t
o</ [ wla e w - sl dxdr ¥n - N
o0 Q
pividing by t and letting t + 0 we obtain
n n n
0 ;/Q fug(1 + 28" () = ABlug)lg (0) ax , ¥n <N .
AS n > ug + rx[Blp)) " in LZ(Q), A 0 in L2 (7) and for a suitable
sdbsequence g’ (ug) + B (rx[B(p)]).

Hence we can pass to the limit under integral as n - =, to obtain

Ir(1 + 28" (r)) - AB(r)) f ¢ dx >0
Blp)

Since v _ > 0 in @, this in turn gives

AB(r) +
r

<1+ A8'(r) , recR

’

i.e. -d—(&(—r-)-d»lnr)>0 reR+
ar r -

This concludes the proof of the theorem, in the case of B8'(r) uniformly bounded

+
¥r ¢R .
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Suppose now that r - [0,={" D(R) ~ ﬁo(r) is continuously differentiable.

et r <« D(3) be selected and let {ug~ be constructed as in the first part
of the proof.

Let n - O such that r + » » D(&) and denote by y a continuously dif-

ferentiable maximal monotone graph in R xR such that

(1) (s} . 3(s) S - r +n

(i) v <0 on D(B)

(iii) ' (r) is uniformly bounded ¥r - [0,«)

If we denote by u;(-,ug,o) the solution of (E3) with R replaced by Yy, then

by virtue of the Remark 3.6
n n
uj (+,ug,0) 2u, (0 20 .

Hence the argument can be repeated on the u}(-,ug,o) to yield the result.
&
Remark 3.8. We do not expect condition (ii) to be necessary without the assumption

of continuous differentiability on B(+). We saw that (iii) is satisfied when

D(8) c [0,») regardless of the behavior of 3(+) in its domain (in particular
when (ii) is violated). If we assume R(+) differentiable at 0, then

0 ¢ Int D(B), hence we are not in the previous situation. It would be of interest
to know whether only the assumption of differentiability at the origin suffices in

order for (ii) to be necessary.
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